Pengenalan Singkat terhadap Seri Waktu Modern Definisi Suatu deret waktu adalah fungsi acak x t dari sebuah argumen t pada himpunan T. Dengan kata lain, deret waktu adalah keluarga dari variabel acak. X t-1 X t. X t1. Sesuai dengan semua elemen di himpunan T, di mana T seharusnya merupakan rangkaian tak terhitung dan tak terbatas. Definisi Suatu deret waktu yang teramati t t e T o T dianggap sebagai bagian dari satu realisasi fungsi acak x t. Satu set kemungkinan realisasi yang mungkin telah diamati disebut ansambel. Untuk menempatkan hal-hal lebih ketat, deret waktu (atau fungsi acak) adalah fungsi nyata x (w, t) dari dua variabel w dan t, dimana wW dan t T. Jika kita memperbaiki nilai w. Kita memiliki fungsi nyata x (t w) dari waktu t, yang merupakan realisasi deret waktu. Jika kita memperbaiki nilai t, maka kita memiliki variabel acak x (w t). Untuk suatu titik waktu tertentu ada distribusi probabilitas lebih dari x. Jadi fungsi acak x (w, t) dapat dianggap sebagai salah satu keluarga variabel acak atau sebagai keluarga realisasi. Definisi Kita mendefinisikan fungsi distribusi dari variabel acak dengan t 0 sebagai P o) x (x). Demikian pula kita dapat mendefinisikan distribusi bersama untuk n variabel acak Poin-poin yang membedakan analisis deret waktu dari analisis statistik biasa adalah sebagai berikut (1) Ketergantungan di antara pengamatan pada titik kronologis yang berbeda pada waktunya memainkan peran penting. Dengan kata lain, urutan pengamatan itu penting. Dalam analisis statistik biasa diasumsikan bahwa pengamatan saling independen. (2) Domain t tidak terbatas. (3) Kita harus membuat kesimpulan dari satu realisasi. Realisasi variabel acak dapat diamati hanya sekali pada setiap titik waktu. Dalam analisis multivariat kita memiliki banyak pengamatan terhadap sejumlah variabel yang terbatas. Perbedaan kritis ini mengharuskan asumsi adanya stasioneritas. Definisi Fungsi acak x t dikatakan benar-benar stasioner jika semua fungsi distribusi berdimensi hingga yang menentukan x t tetap sama walaupun seluruh kelompok titik t 1. T 2. T n bergeser sepanjang sumbu waktu. Artinya, jika untuk bilangan bulat t 1. T 2. T n dan k. Secara grafis, seseorang dapat membayangkan realisasi rangkaian stasioner yang ketat karena tidak hanya memiliki tingkat yang sama dalam dua interval yang berbeda, namun juga fungsi distribusi yang sama, sampai pada parameter yang menentukannya. Asumsi stasioneritas membuat hidup kita lebih sederhana dan lebih murah. Tanpa stasioneritas, kita harus sering mencicipi proses ini pada setiap titik waktu untuk membangun karakterisasi fungsi distribusi dalam definisi sebelumnya. Stationarity berarti bahwa kita dapat membatasi perhatian kita pada beberapa fungsi numerik yang paling sederhana, yaitu saat-saat distribusi. Saat-saat sentral diberikan oleh Definisi (i) Nilai rata-rata dari deret waktu t adalah momen orde pertama. (Ii) Fungsi autocovariance dari t adalah momen kedua tentang mean. Jika ts maka Anda memiliki varians x t. Kita akan menggunakan untuk menunjukkan autocovariance dari rangkaian stasioner, di mana k menunjukkan perbedaan antara t dan s. (Iii) Fungsi autokorelasi (ACF) t adalah Kami akan menggunakan untuk menunjukkan autokorelasi dari rangkaian stasioner, di mana k menunjukkan perbedaan antara t dan s. (Iv) autokorelasi parsial (PACF). F kk Adalah korelasi antara z t dan z tk setelah menghilangkan ketergantungan linier mereka pada variabel intervening z t1. Z t2 Z tk-1 Salah satu cara sederhana untuk menghitung autokorelasi parsial antara z t dan z tk adalah dengan menjalankan dua regresi kemudian menghitung korelasi antara dua vektor residual. Atau, setelah mengukur variabel sebagai penyimpangan dari meannya, autokorelasi parsial dapat ditemukan sebagai koefisien regresi LS pada z t pada model dimana titik di atas variabel menunjukkan bahwa itu diukur sebagai penyimpangan dari meannya. (V) Persamaan Yule-Walker memberikan hubungan penting antara autokorelasi parsial dan autokorelasi. Kalikan kedua sisi persamaan 10 dengan z tk-j dan ambillah ekspektasi. Operasi ini memberi kita persamaan perbedaan berikut dalam autocovariances atau, dalam hal autokorelasi Representasi yang tampaknya sederhana ini benar-benar merupakan hasil yang hebat. Yaitu untuk j1,2. K kita dapat menulis sistem persamaan penuh, yang dikenal sebagai persamaan Yule-Walker, Dari aljabar linier Anda tahu bahwa matriks r adalah pangkat penuh. Oleh karena itu dimungkinkan untuk menerapkan aturan Cramser berturut-turut untuk k1,2. Untuk memecahkan sistem autokorelasi parsial. Tiga yang pertama adalah Kami memiliki tiga hasil penting pada seri stasioner yang ketat. Implikasinya adalah kita bisa menggunakan realisasi berurutan dari urutan untuk memperkirakan meannya. Kedua. Jika t benar-benar stasioner dan E t 2 lt maka Implikasinya adalah bahwa autocovariance hanya bergantung pada perbedaan antara t dan s, bukan kronologisnya pada waktunya. Kita bisa menggunakan sepasang interval dalam perhitungan autocovariance selama waktu di antara keduanya konstan. Dan kita bisa menggunakan realisasi data yang terbatas untuk memperkirakan autocovariances. Ketiga, fungsi autokorelasi dalam hal stasioneritas ketat diberikan oleh Implikasinya adalah bahwa autokorelasi hanya bergantung pada selisih antara t dan s juga, dan sekali lagi dapat diperkirakan dengan realisasi data yang terbatas. Jika tujuan kita adalah untuk memperkirakan parameter yang deskriptif tentang kemungkinan realisasi dari deret waktu, maka mungkin stasioneritasnya terlalu ketat. Misalnya, jika mean dan kovariansi x t konstan dan tidak bergantung pada titik kronologis, maka mungkin tidak penting bagi kita bahwa fungsi distribusi sama untuk interval waktu yang berbeda. Definisi Fungsi acak bersifat stasioner dalam arti luas (atau lemah stasioner, atau stasioner dalam pengertian Khinchin, atau stasioner kovarian) jika m 1 (t) m dan m 11 (t, s). Strukturalitas yang ketat tidak dengan sendirinya menyiratkan stasioneritas yang lemah. Lemahnya stasioneritas tidak menyiratkan stasioneritas yang ketat. Strukturalitas yang ketat dengan E t 2 ini berarti lemahnya stasioneritas. Teorema ergodik berkaitan dengan pertanyaan tentang kondisi yang diperlukan dan cukup untuk membuat kesimpulan dari satu realisasi deret waktu. Pada dasarnya, ini bermuara pada asumsi lemahnya stasioneritas. Teorema Jika t lemah stasioner dengan mean m dan fungsi kovariansi, maka untuk itu, untuk setiap gt 0 dan h gt 0 ada beberapa nomor T o sehingga untuk semua T gt T o. Jika dan hanya jika kondisi yang diperlukan dan memadai ini adalah bahwa autocovariances mati, dalam hal ini mean sampel adalah estimator yang konsisten untuk mean populasi. Konsekuensi Jika t lemah dengan E tk xt 2 lt untuk setiap t, dan E tk xtx tsk x ts tidak bergantung pada t untuk bilangan bulat apa pun, maka jika dan hanya jika jika Konsekuensi dari konsekuensi sebenarnya adalah asumsi bahwa xtx tk adalah Lemah stasioner Teorema Ergodik tidak lebih dari sekedar hukum dalam jumlah besar bila pengamatannya berkorelasi. Orang mungkin bertanya pada saat ini tentang implikasi praktis dari stasioneritas. Penerapan teknik time series yang paling umum adalah pemodelan data makroekonomi, baik teori maupun atheoretik. Sebagai contoh yang pertama, seseorang mungkin memiliki model multiplier-accelerator. Agar model menjadi stasioner, parameter harus memiliki nilai tertentu. Uji model ini kemudian mengumpulkan data yang relevan dan memperkirakan parameternya. Jika perkiraan tidak konsisten dengan stasioneritas, maka seseorang harus memikirkan kembali model teoritis atau model statistik, atau keduanya. Kami sekarang memiliki cukup mesin untuk mulai berbicara tentang pemodelan data seri waktu univariat. Ada empat langkah dalam prosesnya. 1. Membangun model dari teori dan pengalaman pengetahuan 2. mengidentifikasi model berdasarkan data (seri yang diamati) 3. Memasangkan model (memperkirakan parameter model) 4. memeriksa model Jika pada langkah keempat kita tidak Puas kita kembali ke langkah pertama. Prosesnya berulang-ulang sampai pemeriksaan dan penilaian lebih lanjut tidak menghasilkan perbaikan lebih lanjut dalam hasil. Diagramatik Definisi Beberapa operasi sederhana meliputi: Operator backshift Bx tx t-1 Operator depan Fx tx t1 Operator perbedaan 1 - B xtxt - x t-1 Operator perbedaan berperilaku dengan mode yang konsisten dengan konstanta dalam deret tak terbatas. . Artinya, kebalikannya adalah batas jumlah tak terbatas. Yakni, -1 (1-B) -1 1 (1-B) 1BB 2. Operator gabungan S -1 Karena kebalikan dari operator perbedaan, operator gabungan berfungsi untuk menyusun penjumlahan. BANGUNAN MODEL Pada bagian ini kami menawarkan tinjauan singkat tentang model deret waktu yang paling umum. Berdasarkan pengetahuan tentang proses penghasil data, seseorang memilih kelas model untuk identifikasi dan estimasi dari kemungkinan yang mengikutinya. Definisi Misalkan Ex t m independen dari t. Model seperti dengan karakteristik disebut model autoregresif dari urutan p, AR (p). Definisi Jika suatu variabel dependen waktu (proses stokastik) t memenuhi maka t dikatakan memenuhi sifat Markov. Pada LHS, harapan dikondisikan pada sejarah tak terbatas x t. Di RHS itu dikondisikan hanya pada sebagian dari sejarah. Dari definisi tersebut, model AR (p) terlihat memuaskan properti Markov. Dengan menggunakan operator backshift kita dapat menulis model AR kita sebagai Teorema Suatu kondisi yang diperlukan dan cukup untuk model AR (p) menjadi stasioner adalah bahwa semua akar polinomial berada di luar lingkaran unit. Contoh 1 Perhatikan AR (1) Akar satunya dari 1 - f 1 B 0 adalah B 1 f 1. Kondisi untuk stationarity mensyaratkan hal itu. Jika kemudian seri yang diamati akan nampak sangat hingar bingar. Misalnya. Pertimbangkan di mana istilah white noise memiliki distribusi normal dengan mean nol dan varians dari satu. Hasil observasi beralih dengan hampir setiap pengamatan. Jika, di sisi lain, maka seri yang diamati akan jauh lebih mulus. Pada seri ini observasi cenderung berada di atas 0 jika pendahulunya berada di atas nol. Perbedaan dari e t adalah s e 2 untuk semua t. Varians dari x t. Bila sudah nol berarti, diberikan oleh Karena seri itu stasioner kita bisa menulis. Oleh karena itu, fungsi autocovariance dari rangkaian AR (1) adalah, seandainya tanpa kehilangan generalitas m 0 Untuk melihat seperti apa ini dari segi parameter AR, kita akan menggunakan fakta bahwa kita dapat menulis xt sebagai berikut Mengalikan dengan x Tk dan mengambil ekspektasi Perhatikan bahwa autocovariances mati saat k tumbuh. Fungsi autokorelasi adalah autocovariance dibagi dengan varians istilah white noise. Atau, . Dengan menggunakan formula Yule-Walker sebelumnya untuk autokorelasi parsial yang kita miliki Untuk AR (1) autokorelasi mati secara eksponensial dan autokorelasi parsial menunjukkan lonjakan pada satu lag dan nol setelahnya. Contoh 2 Perhatikan AR (2) Polinomial yang terkait pada operator lag adalah Akar dapat ditemukan dengan menggunakan rumus kuadrat. Akarnya adalah Bila akar itu nyata dan akibatnya seri akan menurun secara eksponensial sebagai respons terhadap kejutan. Bila akarnya rumit dan seri akan muncul sebagai gelombang tanda teredam. Teorema stasioneritas membebankan kondisi berikut pada koefisien AR Autocovariance untuk proses AR (2), dengan mean nol, Membagi melalui varians xt memberikan fungsi autokorelasi Karena kita dapat menulis yang serupa untuk autokorelasi kedua dan ketiga yang lain. Autokorelasi dipecahkan secara rekursif. Pola mereka diatur oleh akar persamaan diferensial linier orde kedua Jika akarnya nyata maka autokorelasi akan menurun secara eksponensial. Bila akarnya rumit, autokorelasi akan muncul sebagai gelombang sinus yang teredam. Dengan menggunakan persamaan Yule-Walker, autokorelasi parsial adalah Sekali lagi, autokorelasi padam perlahan. Autokorelasi parsial di sisi lain cukup khas. Ini memiliki lonjakan pada satu dan dua kelambatan dan nol setelahnya. Teorema Jika x t adalah proses AR (p) stasioner maka dapat dituliskan secara ekivalen sebagai model filter linier. Artinya, polinom di operator backshift bisa terbalik dan AR (p) ditulis sebagai moving average dari pesanan tak terbatas. Contoh Misalkan z t adalah proses AR (1) dengan mean nol. Apa yang benar untuk periode sekarang juga harus benar untuk periode sebelumnya. Jadi dengan substitusi rekursif kita dapat menulis Square kedua sisi dan mengambil ekspektasi sisi kanan lenyap seperti k sejak f lt 1. Oleh karena itu jumlah konvergen ke z t dalam mean kuadrat. Kita dapat menulis ulang model AR (p) sebagai filter linier yang kita tahu bersifat stasioner. Fungsi Autokorelasi dan Autokorelasi Parsial Umumnya Misalkan rangkaian stasioner z t dengan mean nol diketahui bersifat autoregresif. Fungsi autokorelasi AR (p) ditemukan dengan mengambil ekspektasi dan pembagian melalui varians z t Ini memberitahu kita bahwa r k adalah kombinasi linear dari autokorelasi sebelumnya. Kita bisa menggunakan ini dalam menerapkan aturan Cramster menjadi (i) dalam menyelesaikan fkk. Secara khusus kita dapat melihat bahwa ketergantungan linier ini akan menyebabkan f kk 0 untuk k gt p. Fitur khas dari seri autoregressive ini akan sangat berguna ketika menyangkut identifikasi seri yang tidak diketahui. Jika Anda memiliki MathCAD atau MathCAD Explorer maka Anda dapat melakukan eksperimen interactivley dengan beberapa ide AR (p) yang disajikan di sini. Model Bergerak Rata-rata Perhatikan model dinamis di mana rangkaian minat bergantung hanya pada sebagian aspek sejarah istilah white noise. Secara diagram ini dapat digambarkan sebagai Definisi Misalkan t adalah urutan yang tidak berkorelasi dari i. i.d. Variabel acak dengan mean nol dan varians terbatas. Kemudian proses rata-rata order bergerak q, MA (q), diberikan oleh Teorema: Proses moving average selalu stasioner. Bukti: Daripada memulai dengan bukti umum, kita akan melakukannya untuk kasus tertentu. Misalkan z t adalah MA (1). Kemudian . Tentu saja, t memiliki mean nol dan varian terbatas. Rata-rata z t selalu nol. Autocovariances akan diberikan oleh Anda dapat melihat bahwa mean dari variabel acak tidak bergantung pada waktu dengan cara apapun. Anda juga bisa melihat bahwa autocovariance hanya bergantung pada offset s, bukan di mana di seri yang kita mulai. Kita bisa membuktikan hasil yang sama lebih umum dengan memulai dengan, yang memiliki representasi rata-rata pergerakan alternatif. Pertimbangkan dulu varians dari z t. Dengan substitusi rekursif Anda dapat menunjukkan bahwa ini sama dengan jumlah yang kita ketahui sebagai rangkaian konvergen sehingga variansnya terbatas dan tidak tergantung waktu. Kovarians adalah, misalnya, Anda juga dapat melihat bahwa kovarian otomatis hanya bergantung pada titik relatif pada waktunya, bukan pada kronologis waktu. Kesimpulan kami dari semua ini adalah bahwa proses MA () tidak bergerak. Untuk general MA (q) proses fungsi autokorelasi diberikan oleh fungsi autokorelasi parsial akan mati dengan lancar. Anda dapat melihat ini dengan membalik proses untuk mendapatkan proses AR (). Jika Anda memiliki MathCAD atau MathCAD Explorer maka Anda dapat melakukan eksperimen secara interaktif dengan beberapa gagasan MA (q) yang disajikan di sini. Mixed Autoregressive - Model Bergerak Rata-rata Definisi Misalkan t adalah urutan yang tidak berkorelasi dari i. i.d. Variabel acak dengan mean nol dan varians terbatas. Kemudian proses order rata-rata autoregresif, bergerak rata-rata (p, q), ARMA (p, q), diberikan oleh Akar operator autoregresif semuanya berada di luar lingkaran unit. Jumlah yang tidak diketahui adalah pq2. P dan q sudah jelas. 2 meliputi tingkat proses, m. Dan varians istilah white noise, sa 2. Misalkan kita menggabungkan representasi AR dan MA kita sehingga model dan koefisien dinormalisasi sehingga bo 1. Maka representasi ini disebut ARMA (p, q) jika Akar (1) semua terletak di luar lingkaran unit. Anggaplah bahwa y t diukur sebagai penyimpangan dari mean sehingga kita bisa menjatuhkan o. Maka fungsi autocovariance diturunkan dari jika jgtq maka istilah MA drop out dalam harapan untuk memberi Artinya, fungsi autocovariance terlihat seperti AR biasa untuk kelambatan setelah q mereka mati dengan lancar setelah q, tapi kita tidak bisa mengatakan bagaimana 1,2,133, Q akan terlihat Kita juga bisa memeriksa PACF untuk kelas model ini. Model dapat ditulis sebagai Kita dapat menulis ini sebagai proses MA (inf) yang menunjukkan bahwa PACF mati perlahan. Dengan beberapa aritmatika, kita bisa menunjukkan bahwa ini terjadi hanya setelah lonjakan p pertama disumbang oleh bagian AR. Hukum Empiris Sebenarnya, rangkaian waktu stasioner dapat ditunjukkan oleh p 2 dan q 2. Jika bisnis Anda memberikan perkiraan yang baik terhadap kenyataan dan kebaikan yang sesuai adalah kriteria Anda, maka model yang hilang lebih disukai. Jika minat Anda adalah efisiensi prediktif maka model pelit itu lebih diutamakan. Bereksperimenlah dengan gagasan ARMA yang disajikan di atas dengan lembar kerja MathCAD. Autoregressive Mengintegrasikan Moving Average Model MA filter AR filter Mengintegrasikan filter Terkadang proses, atau seri, kita coba model tidak diam di level. Tapi itu mungkin diam di, katakanlah, perbedaan pertama. Artinya, dalam bentuk aslinya, autocovariances untuk serial ini mungkin tidak terlepas dari kronologis waktu. Namun, jika kita membuat seri baru yang merupakan perbedaan pertama dari seri aslinya, seri baru ini memenuhi definisi stasioneritas. Hal ini sering terjadi pada data ekonomi yang sangat cenderung. Definisi Misalkan z t tidak stasioner, tapi z t - z t-1 memenuhi definisi stasioneritas. Juga, pada, istilah white noise memiliki mean dan varian yang terbatas. Kita bisa menulis model seperti ini dinamakan model ARIMA (p, d, q). P mengidentifikasi urutan operator AR, d mengidentifikasi daya. Q mengidentifikasi urutan operator MA. Jika akar f (B) berada di luar lingkaran satuan maka kita dapat menulis ulang ARIMA (p, d, q) sebagai filter linier. Yaitu. Itu bisa ditulis sebagai MA (). Kami menyimpan diskusi tentang pendeteksian akar unit untuk bagian lain dari catatan kuliah. Pertimbangkan sistem dinamis dengan x t sebagai rangkaian masukan dan y sebagai keluaran seri. Secara diagram kami memiliki Model-model ini adalah analogi diskrit dari persamaan diferensial linier. Kami menganggap hubungan berikut dimana b menunjukkan penundaan murni. Ingat itu (1-B). Dengan membuat substitusi ini model dapat dituliskan Jika koefisien polinomial pada y t dapat terbalik maka model dapat dituliskan sebagai V (B) dikenal sebagai fungsi respon impuls. Kita akan menemukan terminologi ini lagi dalam pembahasan vektor autoregresif kita nanti. Kointegrasi dan koreksi kesalahan model. IDENTIFIKASI MODEL Setelah memutuskan kelas model, seseorang harus mengidentifikasi urutan proses yang menghasilkan data. Artinya, seseorang harus membuat tebakan terbaik mengenai urutan proses AR dan MA yang mengemudikan seri stasioner. Seri stasioner benar-benar ditandai oleh mean dan autocovariances-nya. Untuk alasan analitis, biasanya kita bekerja dengan autokorelasi dan autokorelasi parsial. Dua alat dasar ini memiliki pola unik untuk proses AR dan MA stasioner. Seseorang dapat menghitung perkiraan sampel autokorelasi dan fungsi autokorelasi parsial dan membandingkannya dengan hasil tabulasi untuk model standar. Contoh Autocovariance Function Contoh Fungsi Autokorelasi Autokorelasi parsial sampel akan Menggunakan autokorelasi dan autokorelasi parsial cukup sederhana. Misalkan kita memiliki seri z t. Dengan mean nol, yaitu AR (1). Jika kita menjalankan regresi z t2 pada z t1 dan z t kita akan berharap untuk menemukan bahwa koefisien pada z t tidak berbeda dari nol karena autokorelasi parsial ini seharusnya nol. Di sisi lain, autokorelasi untuk seri ini seharusnya menurun secara eksponensial untuk meningkatkan kelambatan (lihat contoh AR (1) di atas). Misalkan seri itu benar-benar bergerak rata-rata. Autokorelasi harus nol di mana-mana tapi pada lag pertama. Autokorelasi parsial harus mati secara eksponensial. Bahkan dari kegilaan kita yang sekilas melalui dasar analisis deret waktu, jelaslah bahwa ada dualitas antara proses AR dan MA. Dualitas ini dapat dirangkum dalam tabel berikut. Pengenalan pada ARIMA: model nonseasonal persamaan peramalan ARIMA (p, d, q): Model ARIMA secara teori merupakan kelas model paling umum untuk meramalkan rangkaian waktu yang dapat dibuat untuk Jadilah 8220stationary8221 dengan membedakan (jika perlu), mungkin bersamaan dengan transformasi nonlinier seperti pembalakan atau pengosongan (jika perlu). Variabel acak yang merupakan deret waktu bersifat stasioner jika sifat statistiknya konstan sepanjang waktu. Seri stasioner tidak memiliki tren, variasinya berkisar rata-rata memiliki amplitudo konstan, dan bergoyang secara konsisten. Yaitu pola waktu acak jangka pendeknya selalu terlihat sama dalam arti statistik. Kondisi terakhir ini berarti autokorelasinya (korelasi dengan penyimpangannya sendiri dari mean) tetap konstan dari waktu ke waktu, atau ekuivalen, bahwa spektrum kekuatannya tetap konstan seiring berjalannya waktu. Variabel acak dari bentuk ini dapat dilihat (seperti biasa) sebagai kombinasi antara sinyal dan noise, dan sinyal (jika ada) dapat menjadi pola pengembalian cepat atau lambat, atau osilasi sinusoidal, atau alternasi cepat pada tanda , Dan itu juga bisa memiliki komponen musiman. Model ARIMA dapat dilihat sebagai model 8220filter8221 yang mencoba memisahkan sinyal dari noise, dan sinyal tersebut kemudian diekstrapolasikan ke masa depan untuk mendapatkan perkiraan. Persamaan peramalan ARIMA untuk rangkaian waktu stasioner adalah persamaan linier (yaitu regresi-tipe) dimana prediktor terdiri dari kelambatan variabel dependen dan atau lag dari kesalahan perkiraan. Yaitu: Prediksi nilai Y adalah konstanta dan atau jumlah tertimbang dari satu atau lebih nilai Y dan satu angka tertimbang dari satu atau lebih nilai kesalahan terkini. Jika prediktor hanya terdiri dari nilai Y yang tertinggal, itu adalah model autoregresif murni (8220 self-regressed8221), yang hanyalah kasus khusus dari model regresi dan yang dapat dilengkapi dengan perangkat lunak regresi standar. Sebagai contoh, model autoregresif orde pertama (8220AR (1) 8221) untuk Y adalah model regresi sederhana dimana variabel independennya hanya Y yang tertinggal satu periode (LAG (Y, 1) dalam Statgrafik atau YLAG1 dalam RegresIt). Jika beberapa prediktor tertinggal dari kesalahan, model ARIMA TIDAK merupakan model regresi linier, karena tidak ada cara untuk menentukan error8221 8220last periodier178 sebagai variabel independen: kesalahan harus dihitung berdasarkan periode-ke-periode Saat model dipasang pada data. Dari sudut pandang teknis, masalah dengan menggunakan kesalahan tertinggal sebagai prediktor adalah bahwa prediksi model8217 bukanlah fungsi linear dari koefisien. Meskipun mereka adalah fungsi linier dari data masa lalu. Jadi, koefisien pada model ARIMA yang mencakup kesalahan tertinggal harus diestimasi dengan metode optimasi nonlinier (8220 climb-climbing8221) daripada hanya dengan memecahkan sistem persamaan. Akronim ARIMA adalah singkatan Auto-Regressive Integrated Moving Average. Lags dari rangkaian stasioner dalam persamaan peramalan disebut istilah quotautoregressivequot, kelambatan kesalahan perkiraan disebut istilah kuotasi rata-rata quotmoving average, dan deret waktu yang perlu dibedakan untuk dijadikan stasioner disebut versi seri integimental dari seri stasioner. Model random-walk dan random-trend, model autoregresif, dan model pemulusan eksponensial adalah kasus khusus model ARIMA. Model ARIMA nonseasonal diklasifikasikan sebagai model quotARIMA (p, d, q) quot, di mana: p adalah jumlah istilah autoregresif, d adalah jumlah perbedaan nonseasonal yang diperlukan untuk stasioneritas, dan q adalah jumlah kesalahan perkiraan yang tertinggal dalam Persamaan prediksi Persamaan peramalan dibangun sebagai berikut. Pertama, izinkan y menunjukkan perbedaan D dari Y. yang berarti: Perhatikan bahwa perbedaan kedua Y (kasus d2) bukanlah selisih 2 periode yang lalu. Sebaliknya, ini adalah perbedaan pertama-perbedaan-dari-pertama. Yang merupakan analog diskrit turunan kedua, yaitu akselerasi lokal dari seri daripada tren lokalnya. Dalam hal y. Persamaan peramalan umum adalah: Disini parameter rata-rata bergerak (9528217s) didefinisikan sehingga tanda-tanda mereka negatif dalam persamaan, mengikuti konvensi yang diperkenalkan oleh Box dan Jenkins. Beberapa penulis dan perangkat lunak (termasuk bahasa pemrograman R) mendefinisikannya sehingga mereka memiliki tanda plus. Bila nomor aktual dicolokkan ke dalam persamaan, tidak ada ambiguitas, tapi penting untuk mengetahui konvensi mana yang digunakan perangkat lunak Anda saat Anda membaca hasilnya. Seringkali parameter dilambangkan dengan AR (1), AR (2), 8230, dan MA (1), MA (2), 8230 dll. Untuk mengidentifikasi model ARIMA yang sesuai untuk Y. Anda memulai dengan menentukan urutan differencing (D) perlu membuat stasioner seri dan menghilangkan fitur musiman musiman, mungkin bersamaan dengan transformasi yang menstabilkan varians seperti penebangan atau pengapuran. Jika Anda berhenti pada titik ini dan meramalkan bahwa rangkaian yang berbeda adalah konstan, Anda hanya memiliki model acak berjalan atau acak acak. Namun, rangkaian stationarized masih memiliki kesalahan autokorelasi, menunjukkan bahwa beberapa jumlah istilah AR (p 8805 1) dan beberapa istilah MA (q 8805 1) juga diperlukan dalam persamaan peramalan. Proses penentuan nilai p, d, dan q yang terbaik untuk rangkaian waktu tertentu akan dibahas di bagian catatan selanjutnya (yang tautannya berada di bagian atas halaman ini), namun pratinjau beberapa jenis Model ARIMA nonseasonal yang biasa dijumpai diberikan di bawah ini. ARIMA (1,0,0) model autoregresif orde pertama: jika seri stasioner dan autokorelasi, mungkin dapat diprediksi sebagai kelipatan dari nilai sebelumnya, ditambah konstanta. Persamaan peramalan dalam kasus ini adalah 8230 yang Y regresi pada dirinya sendiri tertinggal oleh satu periode. Ini adalah model konstanta 8220ARIMA (1,0,0) constant8221. Jika mean Y adalah nol, maka istilah konstan tidak akan disertakan. Jika koefisien kemiringan 981 1 positif dan kurang dari 1 besarnya (harus kurang dari 1 dalam besaran jika Y adalah stasioner), model tersebut menggambarkan perilaku rata-rata pada nilai periodisasi berikutnya yang diperkirakan akan menjadi 981 1 kali sebagai Jauh dari mean sebagai nilai periode ini. Jika 981 1 negatif, ia memprediksi perilaku rata-rata dengan alternasi tanda, yaitu juga memprediksi bahwa Y akan berada di bawah rata-rata periode berikutnya jika berada di atas rata-rata periode ini. Dalam model autoregresif orde kedua (ARIMA (2,0,0)), akan ada istilah Y t-2 di sebelah kanan juga, dan seterusnya. Bergantung pada tanda dan besaran koefisien, model ARIMA (2,0,0) bisa menggambarkan sistem yang pembalikan rata-rata terjadi dengan mode sinusoidal oscillating, seperti gerak massa pada pegas yang mengalami guncangan acak. . ARIMA (0,1,0) berjalan acak: Jika seri Y tidak stasioner, model yang paling sederhana untuk model ini adalah model jalan acak, yang dapat dianggap sebagai kasus pembatas model AR (1) dimana autoregresif Koefisien sama dengan 1, yaitu deret dengan reversi mean yang jauh lebih lambat. Persamaan prediksi untuk model ini dapat ditulis sebagai: di mana istilah konstan adalah perubahan periode-ke-periode rata-rata (yaitu drift jangka panjang) di Y. Model ini dapat dipasang sebagai model regresi yang tidak mencegat dimana Perbedaan pertama Y adalah variabel dependen. Karena hanya mencakup perbedaan nonseasonal dan istilah konstan, model ini diklasifikasikan sebagai model quotARIMA (0,1,0) dengan konstan. Model random-walk-without - drift akan menjadi ARIMA (0,1, 0) model tanpa ARIMA konstan (1,1,0) model autoregresif orde satu yang terdesentralisasi: Jika kesalahan model jalan acak diobot dengan autokorelasi, mungkin masalahnya dapat diperbaiki dengan menambahkan satu lag variabel dependen ke persamaan prediksi - - yaitu Dengan mengundurkan diri dari perbedaan pertama Y pada dirinya sendiri yang tertinggal satu periode. Ini akan menghasilkan persamaan prediksi berikut: yang dapat diatur ulang menjadi Ini adalah model autoregresif orde pertama dengan satu urutan perbedaan nonseasonal dan istilah konstan - yaitu. Model ARIMA (1,1,0). ARIMA (0,1,1) tanpa perataan eksponensial sederhana: Strategi lain untuk memperbaiki kesalahan autokorelasi dalam model jalan acak disarankan oleh model pemulusan eksponensial sederhana. Ingatlah bahwa untuk beberapa seri waktu nonstasioner (misalnya yang menunjukkan fluktuasi yang bising di sekitar rata-rata yang bervariasi secara perlahan), model jalan acak tidak berjalan sebaik rata-rata pergerakan nilai masa lalu. Dengan kata lain, daripada mengambil pengamatan terbaru sebagai perkiraan pengamatan berikutnya, lebih baik menggunakan rata-rata beberapa pengamatan terakhir untuk menyaring kebisingan dan memperkirakan secara lebih akurat mean lokal. Model pemulusan eksponensial sederhana menggunakan rata-rata pergerakan rata-rata tertimbang eksponensial untuk mencapai efek ini. Persamaan prediksi untuk model smoothing eksponensial sederhana dapat ditulis dalam sejumlah bentuk ekuivalen matematis. Salah satunya adalah bentuk koreksi yang disebut 8220error correction8221, dimana ramalan sebelumnya disesuaikan dengan kesalahan yang dibuatnya: Karena e t-1 Y t-1 - 374 t-1 menurut definisinya, ini dapat ditulis ulang sebagai : Yang merupakan persamaan peramalan ARIMA (0,1,1) - tanpa perkiraan konstan dengan 952 1 1 - 945. Ini berarti bahwa Anda dapat menyesuaikan smoothing eksponensial sederhana dengan menentukannya sebagai model ARIMA (0,1,1) tanpa Konstan, dan perkiraan koefisien MA (1) sesuai dengan 1-minus-alpha dalam formula SES. Ingatlah bahwa dalam model SES, rata-rata usia data dalam prakiraan 1 periode adalah 1 945. yang berarti bahwa mereka cenderung tertinggal dari tren atau titik balik sekitar 1 945 periode. Dengan demikian, rata-rata usia data dalam prakiraan 1-periode-depan model ARIMA (0,1,1) - tanpa konstan adalah 1 (1 - 952 1). Jadi, misalnya, jika 952 1 0,8, usia rata-rata adalah 5. Karena 952 1 mendekati 1, model ARIMA (0,1,1) - tanpa model konstan menjadi rata-rata bergerak jangka-panjang, dan sebagai 952 1 Pendekatan 0 menjadi model random-walk-without-drift. Apa cara terbaik untuk memperbaiki autokorelasi: menambahkan istilah AR atau menambahkan istilah MA Dalam dua model sebelumnya yang dibahas di atas, masalah kesalahan autokorelasi dalam model jalan acak diperbaiki dengan dua cara yang berbeda: dengan menambahkan nilai lag dari seri yang berbeda Ke persamaan atau menambahkan nilai tertinggal dari kesalahan perkiraan. Pendekatan mana yang terbaik Aturan praktis untuk situasi ini, yang akan dibahas lebih rinci nanti, adalah bahwa autokorelasi positif biasanya paling baik ditangani dengan menambahkan istilah AR ke model dan autokorelasi negatif biasanya paling baik ditangani dengan menambahkan MA istilah. Dalam deret waktu bisnis dan ekonomi, autokorelasi negatif sering muncul sebagai artefak differencing. (Secara umum, differencing mengurangi autokorelasi positif dan bahkan dapat menyebabkan perubahan dari autokorelasi positif ke negatif.) Jadi, model ARIMA (0,1,1), di mana perbedaannya disertai dengan istilah MA, lebih sering digunakan daripada Model ARIMA (1,1,0). ARIMA (0,1,1) dengan perataan eksponensial sederhana konstan dengan pertumbuhan: Dengan menerapkan model SES sebagai model ARIMA, Anda benar-benar mendapatkan fleksibilitas. Pertama, perkiraan koefisien MA (1) dibiarkan negatif. Ini sesuai dengan faktor pemulusan yang lebih besar dari 1 dalam model SES, yang biasanya tidak diizinkan oleh prosedur pemasangan model SES. Kedua, Anda memiliki pilihan untuk memasukkan istilah konstan dalam model ARIMA jika Anda mau, untuk memperkirakan tren nol rata-rata. Model ARIMA (0,1,1) dengan konstanta memiliki persamaan prediksi: Prakiraan satu periode dari model ini secara kualitatif serupa dengan model SES, kecuali bahwa lintasan perkiraan jangka panjang biasanya adalah Garis miring (kemiringannya sama dengan mu) bukan garis horizontal. ARIMA (0,2,1) atau (0,2,2) tanpa pemulusan eksponensial linier konstan: Model pemulusan eksponensial linier adalah model ARIMA yang menggunakan dua perbedaan nonseason dalam hubungannya dengan persyaratan MA. Perbedaan kedua dari seri Y bukan hanya perbedaan antara Y dan dirinya tertinggal dua periode, namun ini adalah perbedaan pertama dari perbedaan pertama - i. Perubahan perubahan Y pada periode t. Jadi, perbedaan kedua Y pada periode t sama dengan (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Perbedaan kedua dari fungsi diskrit sama dengan turunan kedua dari fungsi kontinyu: ia mengukur kuotasi kuadrat atau quotcurvaturequot dalam fungsi pada suatu titik waktu tertentu. Model ARIMA (0,2,2) tanpa konstan memprediksi bahwa perbedaan kedua dari rangkaian sama dengan fungsi linier dari dua kesalahan perkiraan terakhir: yang dapat disusun ulang sebagai: di mana 952 1 dan 952 2 adalah MA (1) dan MA (2) koefisien. Ini adalah model pemulusan eksponensial linear umum. Dasarnya sama dengan model Holt8217s, dan model Brown8217s adalah kasus khusus. Ini menggunakan rata-rata pergerakan tertimbang eksponensial untuk memperkirakan tingkat lokal dan tren lokal dalam rangkaian. Perkiraan jangka panjang dari model ini menyatu dengan garis lurus yang kemiringannya bergantung pada tren rata-rata yang diamati menjelang akhir rangkaian. ARIMA (1,1,2) tanpa perataan eksponensial eksponensial yang terfragmentasi. Model ini diilustrasikan pada slide yang menyertainya pada model ARIMA. Ini mengekstrapolasikan tren lokal di akhir seri namun meratakannya pada cakrawala perkiraan yang lebih panjang untuk memperkenalkan catatan konservatisme, sebuah praktik yang memiliki dukungan empiris. Lihat artikel di quotWhy the Damped Trend karyaquot oleh Gardner dan McKenzie dan artikel quotGolden Rulequot oleh Armstrong dkk. Untuk rinciannya. Umumnya disarankan untuk tetap berpegang pada model di mana setidaknya satu dari p dan q tidak lebih besar dari 1, yaitu jangan mencoba menyesuaikan model seperti ARIMA (2,1,2), karena hal ini cenderung menyebabkan overfitting. Dan isu-isu kuotom-faktorquot yang dibahas secara lebih rinci dalam catatan tentang struktur matematis model ARIMA. Implementasi Spreadsheet: Model ARIMA seperti yang dijelaskan di atas mudah diterapkan pada spreadsheet. Persamaan prediksi adalah persamaan linier yang mengacu pada nilai-nilai masa lalu dari rangkaian waktu asli dan nilai kesalahan masa lalu. Dengan demikian, Anda dapat membuat spreadsheet peramalan ARIMA dengan menyimpan data di kolom A, rumus peramalan pada kolom B, dan kesalahan (data minus prakiraan) di kolom C. Rumus peramalan pada sel biasa di kolom B hanya akan menjadi Sebuah ekspresi linier yang mengacu pada nilai-nilai pada baris-kolom sebelumnya kolom A dan C, dikalikan dengan koefisien AR atau MA yang sesuai yang tersimpan dalam sel di tempat lain pada spreadsheet. STAT 497 CATATAN LECTURE 2 1. FUNGSI AUTOCOVARIANCE DAN FUNGSI AUTOCORRELATION Untuk proses stasioner, Autocovariance antara Y t dan Y. Presentasi pada tema: STAT 497 CATATAN LECTURE 2 1. FUNGSI AUTOCOVARIANCE DAN FUNGSI AUTOCORRELATION Untuk proses stasioner, autocovariance antara Y t dan Y. Transkrip presentasi: 2 AUTOCOVARIANCE DAN FUNGSI AUTOCORRELATION Untuk alat tulis Proses, autocovariance antara Y t dan Y tk adalah dan fungsi autokorelasinya adalah 2 3 SIFAT FUNGSI AUTOCOVERANCE AND THE AUTOCORRELATION: 1. 2. 3. 4. (kondisi yang diperlukan) k dan k adalah semi positif untuk setiap titik waktu t 1, t 2,, t n dan bilangan real 1, 2 ,, n. FASILITAS AUTOCORRELATION PARTIAL (PACF) PACF adalah korelasi antara Y t dan Y t-k setelah ketergantungan linier saling terkait pada variabel intervening Y t-1, Y t-2,, Y t-k1 telah dihapus. Korelasi kondisional biasanya disebut autokorelasi parsial dalam deret waktu. 4 5 PERHITUNGAN PACF 1. PENDEKATAN REGRESI: Pertimbangkan sebuah model dari proses stasioner nol berarti dimana ki menunjukkan koefisien Y t ki dan etk adalah mean error mean error yang tidak berkorelasi dengan Y t ki, i0,1, k . Kalikan kedua sisi oleh Y t kj 5 11 PROSES WHITE NOISE (WN) Proses disebut proses white noise (WN), jika ini adalah urutan variabel acak yang tidak berkorelasi dari suatu distribusi tetap dengan mean konstan, varian konstan dan Cov (Y T, Y tk) 0 untuk semua k0. 11 12 PROSES WHITE NOISE (WN) Ini adalah proses stasioner dengan fungsi autocovariance 12 Fenomena Dasar: ACFPACF 0, k 0. 13 PROSES WHITE NOISE (WN) Kebisingan putih (dalam analisis spektral): cahaya putih dihasilkan di mana semua frekuensi ( Yaitu warna) hadir dalam jumlah yang sama. Proses tanpa ingatan Blok bangunan dari mana kita bisa membuat model yang lebih rumit Ini memainkan peran basis ortogonal dalam analisis vektor dan fungsi umum. 13 15 ERGODISITAS Hukum Kolmogorov sejumlah besar (LLN) mengatakan bahwa jika X i iid (, 2) untuk i 1. n, maka kita memiliki batas berikut untuk ansambel rata-rata Dalam deret waktu, kita memiliki rata-rata deret waktu, bukan rata-rata ansambel . Oleh karena itu, rata-rata dihitung dengan rata-rata dari waktu ke waktu. Apakah rata-rata deret waktu menyatu dengan batas yang sama dengan ansambel rata-rata Jawabannya adalah iya, jika Y t stasioner dan ergodik. 15 16 ERGODISITAS Proses stasioner kovarian dikatakan ergodis untuk mean, jika rata-rata deret waktu menyatu dengan mean populasi. Demikian pula, jika sampel rata-rata memberikan perkiraan konsisten untuk momen kedua, maka prosesnya dikatakan ergodik untuk momen kedua. 16 17 KESIMPULAN Kondisi yang cukup untuk proses stasioner kovarian menjadi ergodis untuk meannya. Selanjutnya, jika prosesnya adalah Gaussian, maka autocovariances yang absolut juga memastikan bahwa prosesnya ergodik untuk semua momen. 17 19 FUNGSI AUTOCORRELATION SAMPEL Sebuah plot versus k korelogram sampel Untuk ukuran sampel yang besar, biasanya didistribusikan dengan mean k dan varians didekati dengan pendekatan Bartletts untuk proses di mana k 0 untuk km. 19 m. Judul19 FUNGSI AUTOCORRELATION SAMPEL Dalam praktiknya, saya tidak diketahui dan digantikan oleh perkiraan sampel mereka. Oleh karena itu, kita memiliki kesalahan standar lag besar berikut ini. 20 21 FUNGSI AUTOCORRELATION SAMPEL Untuk proses WN, kita memiliki interval kepercayaan 95 untuk k. Oleh karena itu, untuk menguji prosesnya adalah WN atau tidak, gambarlah 2n 12 baris pada correlogram sampel. Jika semua berada di dalam batas, prosesnya bisa berupa WN (kita perlu memeriksa contoh PACF juga). 21 Untuk proses WN, harus mendekati nol. FUNGSI AUTOCORRELATION PARTAI KHUSUS UNTUK proses WN, 2n 12 dapat digunakan sebagai batas kritis pada kk untuk menguji hipotesis proses WN. 22 23 BACKSHIFT (OR LAG) OPERATOR Operator backshift, B didefinisikan sebagai mis. Random Shock Process: 23 24 MOVING AVERAGE REPRESENTATION OF A TIME SERIES Juga dikenal sebagai Random Shock Form atau Wold (1938) Representasi. Membiarkan menjadi deret waktu. Untuk proses stasioner, kita bisa menulis sebagai kombinasi linier dari deret wortel yang tidak berkorelasi (WN). PROSES UMUM LINEAR: 24 di mana 0 I, adalah 0 berarti proses WN dan 27 PERBAIKAN RATA-RATA RATA-RATA SERAT WAKTU Karena mereka melibatkan jumlah tak terbatas, menjadi statin Oleh karena itu, adalah kondisi yang diperlukan agar proses menjadi tidak bergerak. Ini adalah proses non-deterministik: Suatu proses tidak mengandung komponen deterministik (tidak ada keacakan di negara-negara masa depan sistem) yang dapat diprediksi persis dari masa lalunya sendiri. 27 28 FUNGSI PEMELIHARAAN AUTOCOVARIANCE Untuk rangkaian otokovirsi k, k0, 1, 2, fungsi pembangkitan autocovariance didefinisikan sebagai di mana varians dari proses yang diberikan 0 adalah koefisien B 0 dan autocovariance lag k, k adalah Koefisien kedua B k dan B k. 28 22 11 31 CONTOH a) Tuliskan persamaan di atas dalam bentuk kejutan acak. B) Temukan fungsi pembangkitan otokovarisi. 31 32 REPRESENTASI AUTOREGRESSIVE SERI WAKTU Representasi ini juga dikenal sebagai FORMULIR INVERTED. Regres nilai Y t pada waktu t pada masa lalu ditambah kejutan acak. 32 33 REPRESENTASI AUTOREGRESSIVE SERI WAKTU Ini adalah proses yang dapat dibalik (penting untuk peramalan). Tidak setiap proses stasioner dapat dibalik (Box dan Jenkins, 1978). Invertibilitas memberikan keunikan fungsi autokorelasi. Artinya, model deret waktu yang berbeda dapat kembali diungkapkan satu sama lain. 33 34 ATURAN INVERTIBILITAS MENGGUNAKAN FORMULIR SHOCK RANDOM Untuk proses linier, dapat dibalik, akar dari (B) 0 sebagai fungsi B harus terletak di luar lingkaran unit. Jika merupakan akar dari (B), maka 1. (bilangan real) adalah nilai absolutnya. (Bilangan kompleks) adalah 34 1. (bilangan real) adalah nilai absolutnya. (Bilangan kompleks) adalah 34. 35 ATURAN INVERTIBILITAS MENGGUNAKAN FORMULIR SHOCK RANDOM Hal ini dapat berupa stasioner jika prosesnya dapat ditulis ulang di RSF, yaitu 35 36 PERATURAN STASIUN MENGGUNAKAN FORMULIR TERTULIS Untuk proses linier, dapat dibalik, Akar (B) 0 sebagai fungsi B harus berada di luar lingkaran satuan. Jika merupakan akar dari (B), maka 1. 36 1. 36. 37 FORMULIR FORMULIR RANDOM DAN FORMULIR FORMULIR AR dan MA bukanlah bentuk modelnya. Karena mengandung sejumlah parameter yang tak terbatas yang tidak mungkin diperkirakan dari jumlah pengamatan yang terbatas. 37 38 MODEL TIME SERIES Dalam bentuk Inverted suatu proses, jika hanya jumlah bobot yang terbatas tidak nol, yaitu prosesnya disebut proses AR (p). MODEL TIME SERIES Dalam Shock Acak Bentuk suatu proses, jika hanya jumlah bobot yang terbatas tidak nol, maka prosesnya disebut proses MA (q). 39 41 MODEL WAKTU SERIES Jumlah parameter dalam model bisa besar. Alternatif alami adalah proses AR dan MA campuran ARMA (p, q) Untuk sejumlah pengamatan yang tetap, semakin banyak parameter dalam model, semakin efisien estimasi parameter. Pilih model yang lebih sederhana untuk menggambarkan fenomena tersebut. 41 Download ppt STAT 497 CATATAN LECTURE 2 1. AUTOKOVARIANCE DAN FUNGSI AUTOCORRELATION Untuk proses stasioner, autocovariance antara Y t dan Y.
No comments:
Post a Comment